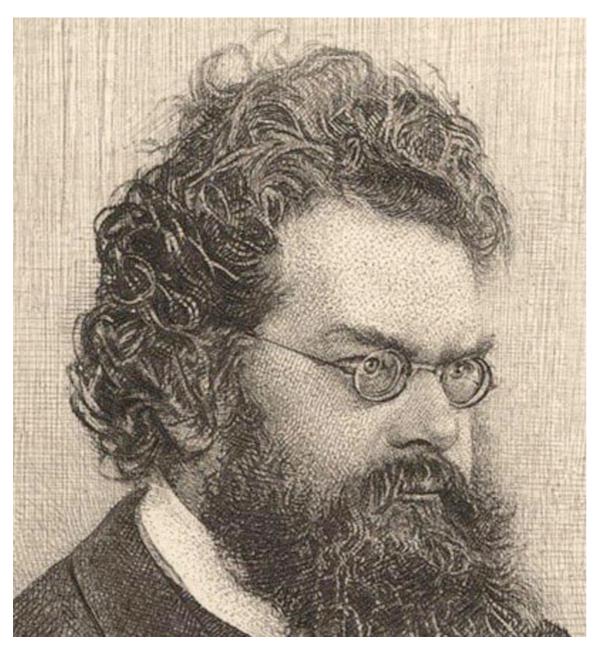
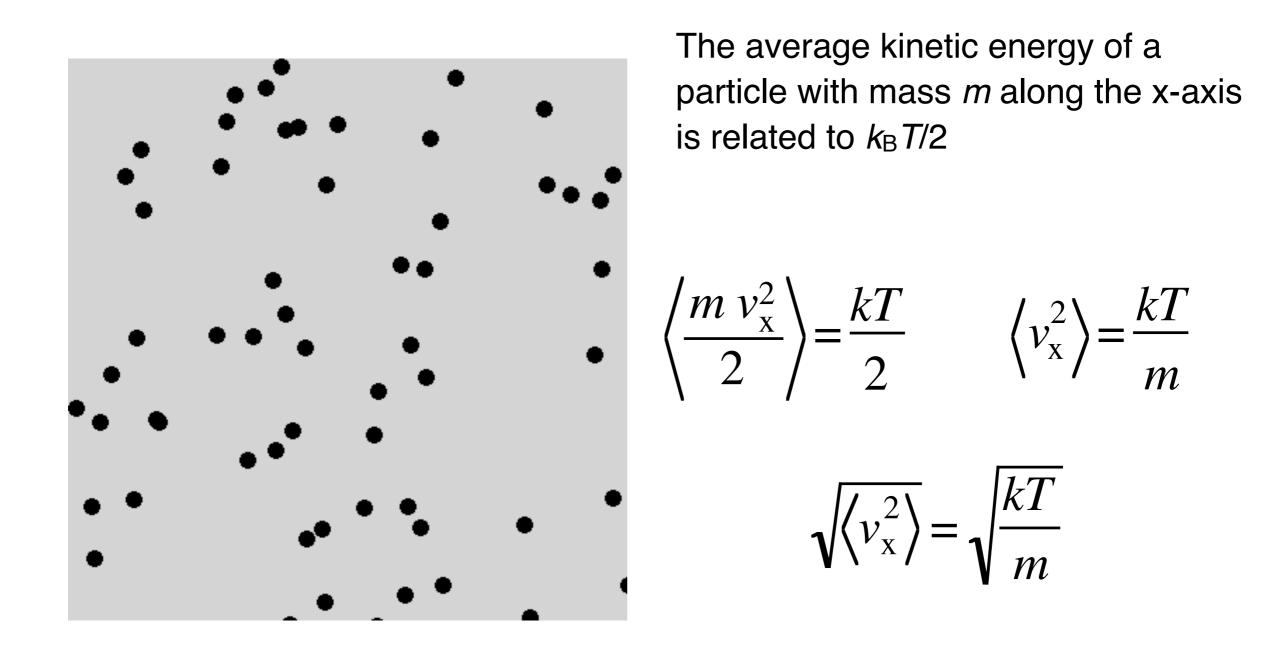

Interactions between proteins, DNA and RNA


The energy coordinate system

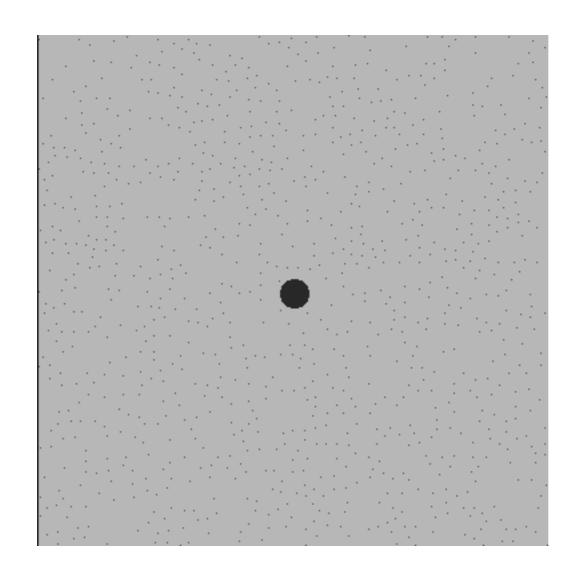
Karsten Rippe

The Boltzmann constant


Definition of entropy as a measure of statistical disorder of a system

 $S \equiv k_{B} \ln W$

Molecular Entropy | Boltzmann Constant Number of microscopic ways in which a particular outcome (macroscopic state) can be attained


Ludwig Boltzmann

Molecules in an ideal gas

A protein like lysozyme (M = 14 kDa) at room temperature would have a speed of $\langle v_x^2 \rangle^{1/2} = 13$ m/sec **in vacuum**.

Thermal motion defines the energy unit $k_B T$ in the cell k_B (Boltzmann constant) x T (temperature)

- The macromolecule collides with water molecules and exchange energy $\sim k_{\rm B}T$
- Macromolecule moves in a "random walk" because collisions are random
- The length of the free path is much smaller than the diameter of the particle.
- The average distance from the starting point is proportional to the square root of time.

$k_{\rm B}T$ is the energy available for spontaneous reactions

$$P_{\rm i} \propto g_i \cdot \exp\left(\frac{-E_{\rm i}}{k_{\rm B}T}\right)$$

The Boltzmann equation yields the probability P_i to find a molecule with energy E_i

- g_i : number of different states with energy E_i
- *k*_B: Boltzmann constant
- T: Temperature

probability to find a particle with an energy

- of $k_{\rm B}T$ or larger: 0.37 => processes that requires an energy of $k_{\rm B}T$ occur spontaneously
- of 10 k_BT or larger: 0.00005 => these processes will not occur spontaneously

at 298 K (25 °C) $k_B T = 4.1 \cdot 10^{-21}$ J or $k_B T = 4.1$ pN·nm

 $k_{\rm B}T$ refers to a single molecule for 1 mol of particles one has to use $k_{\rm B}T \ge 6.022 \cdot 10^{23} = RT$

at 25 °C with $R = 8.3 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} => RT = 2.5 \text{ kJ/mol or } 0.6 \text{ kcal/mol}$

Hydrolysis of ATP: 20-30 k_BT/ATP, 12 - 18 kcal/mol or 50 - 70 kJ/mol (physiological conditions)

What is the value of $k_{\rm B}$ ·T (or R·T)?

The free energy ΔG

 At constant pressure P and constant temperature T the system is described by the Gibbs free energy:

$$G \equiv H - TS \qquad \Delta G = \Delta H - T\Delta S$$

- *H* is the enthalpy or heat content of the system, *S* is the entropy of the system
- a reaction occurs spontaneously only if $\Delta G < 0$
- at equilibrium $\triangle G = 0$
- for $\Delta G > 0$ the input of energy is required to drive the reaction

ΔG of a reaction in equilibrium

$$aA + bB + \dots \rightleftharpoons gG + hH \dots$$

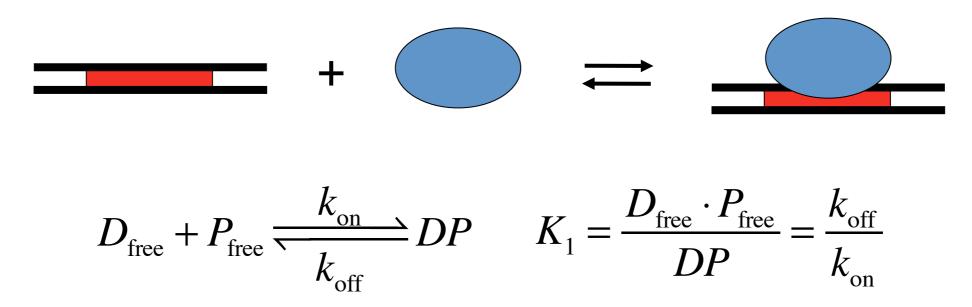
$$0 = \Delta G^0 + RT \ln \left(\frac{[G]^g [H]^h \dots}{[A]^a [B]^b \dots} \right)_{Eq}$$

$$\Delta G^0 = -RT \ln \left(\frac{[G]^g [H]^h \dots}{[A]^a [B]^b \dots} \right)_{\text{Eq}} = -RT \ln K$$

$$K = \left(\frac{[G]^{g}[H]^{h} \dots}{[A]^{a}[B]^{b} \dots}\right)_{\text{Eq}} = \exp\left(\frac{-\Delta G^{0}}{RT}\right)$$

Free energy of ATP hydrolysis under physiological conditions

 $ATP + H_2O \Rightarrow ADP + P_i$

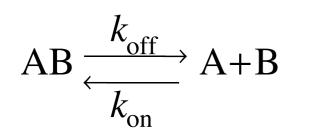

equilibrium concentrations, []_{eq}, define ΔG° = the standard free energy $K'_{eq} = \frac{[ADP]_{eq}/[1M] \times [P_i]_{eq}/[1M]}{[ATP]_{eq}/[1M] \times [H_2O]_{eq}/[55M]} ; \Delta G^{\circ} = -RT \ln (K'_{eq}) \approx -35 \text{ to } -40 \frac{\text{kJ}}{\text{mol}}$

correcting for physiological concentrations, [] phys

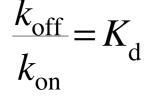
$$Q' = \frac{[ADP]_{phys}/[1M] \times [P_i]_{phys}/[1M]}{[ATP]_{phys}/[1M]}; \quad \Delta G' = \Delta G'^{o} + RT \ln Q' \approx -50 \text{ to} -70 \frac{\text{kJ}}{\text{mol}}$$

or 20-30 *k*_B*T*

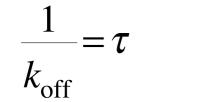
The mass equation law for binding of a protein P to its DNA D



binding of the first proteins with the dissociation constant K_1


 $D_{\rm free}$, concentration free DNA; $P_{\rm free}$, concentration free protein

binding constant
$$K_{\rm B} = \frac{1}{\text{dissociation constant } K_{\rm D}}$$


How fast is binding or dissociation

 k_{off} in s⁻¹ is the reaction rate constant for dissociation k_{on} in M⁻¹ s⁻¹ is the reaction rate constant for binding

relation to the equilibrium dissociation constant

life time of the complex

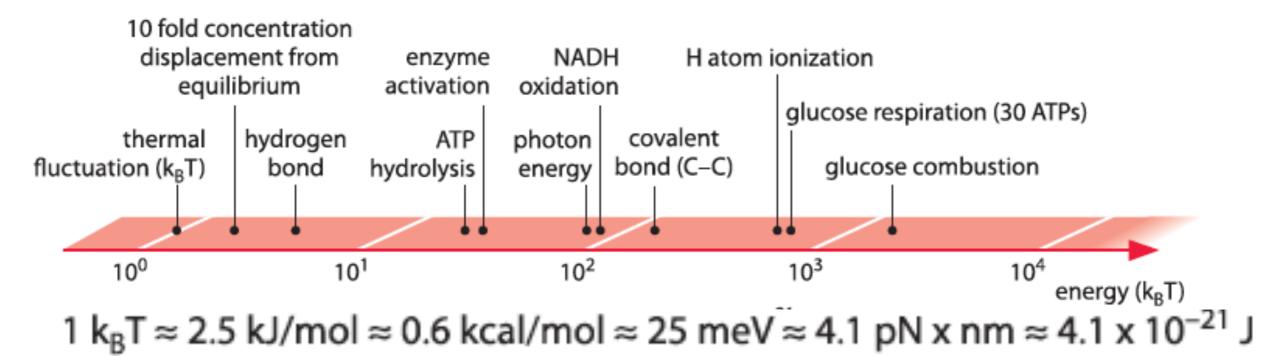
 $\frac{d[AB]}{dt} = k_{on} \cdot [A] \cdot [B] - k_{off} \cdot [AB]$

rate equation for complex formation, can be solved but it is already difficult

k_{on} cannot be higher than 10⁸ - 10⁹ M⁻¹ s⁻¹ for a diffusion controlled reaction

Our energy and time coordinate system

K _d (M)	concentration scale	ΔG (kcal/mol)	k _{off} (s-1)	complex life time	Binding interaction
			for $k_{on} = 10^5 \text{ M}^{-1} \text{ s}^{-1}$		
10-3	1 mM	-4.1	10 ²	10 ms	ion-DNA ion-protein
10-4	0.1 mM	-5.5	10 ¹	0.1 sec	
10-5	10 µM	-6.8	1	1 sec	enzyme-ligand (weak)
10-6	1 uM	-8.2	10-1	10 sec	protein-DNA, unspecific
10-7	0.1 µM	-9.5	10-2	100 sec	enzyme-ligand (strong)
10-8	10 nM	-10.9	10-3	16.7 min	
10 ⁻⁹	1 nM	-12.3	10-4	2.8 hours	protein-DNA specific
10-10	0.1 nM	-13.6	10-5	28 hours	
10-11	10 pM	-15	10-6	11.6 days	antibody-antigen
10-12	1 pM	-16.4	10-7	116 days	


Weak forces maintain macromolecular structure

0.6 kcal/mol or 2.5 kJ/mol thermal energy at 25 °C: enough to break non-covalent bonds => Non-covalent interactions constantly forming and breaking

- Van der Waals forces: k_BT (0.4 4 kJ/mol), 1/r⁶
- Hydrogen bonds: 2-12 *k*_B*T*, 6 30 kJ/mol, 1/r³
- Ionic interactions: 5 kcal/mol physiological, 1/r
- Covalent bonds: 80-300 k_BT, 200-800 kJ/mol, 1/r^{very high} 200 (S-S) 300 (C-C) 740 (C=O) kJ/mol
- Hydrolysis of ATP: 20-30 *k*_B*T*, 50 70 kJ/mol

but noncovalent interactions can occur between macromolecule and water/ions just as well...

Energy scale

Energy scales

- $k_{\rm B}T$ (single molecule) or RT (per mole) reference scale
- Free energy ΔG (equivalent to K_d) for reactions at equilibrium
- Concentration affects binding according to mass equation law
- Entropy from changes of number of states

Macromolecule interactions in water with ions at pH 7

- Non-covalent interactions between macromolecules around $k_{\rm B}T$
- H-bonds and ionic interactions compete with water and ions
- Hydrophobic effect can drive interactions
- Entropy changes (e.g., folding of protein) make large contributions